๐Ÿ“š/2021-2

[์ธ๊ณต์ง€๋Šฅ] Genetic Algorithm application_AssembleNet

sssbin 2021. 12. 17. 12:02

AssembleNet

์—ฐ๊ฒฐ ์›จ์ดํŠธ ๋Ÿฌ๋‹์„ ํ†ตํ•ด ์—ฐ๊ฒฐ์„ฑ์ด ๋” ์ข‹์€ ์‹ ๊ฒฝ ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ž๋™์œผ๋กœ ์ฐพ์•„ ์ง„ํ™”๋ฅผ ์œ ๋„

 

Genetic Algorithm ์ด์šฉํ•ด์„œ ์ตœ์ ํ™”๋œ connection ์ฐพ์Œ

 

- ์ธ์ ‘ํ•œ ๋ ˆ๋ฒจ๋ผ๋ฆฌ connection X

    low level -> high level

 

- edge๋“ค์˜ ์ƒ‰๊น”์ด ๋‹ค ๋‹ค๋ฆ„ -> ๊ฐ€์ค‘์น˜

   (ํ•˜๋‚˜์˜ ๋ธ”๋ก์œผ๋กœ๋ถ€ํ„ฐ ๋‹ค๋ฅธ ๋ธ”๋ก๊นŒ์ง€ ์–ผ๋งŒํผ ๋‚ด ์ •๋ณด๊ฐ€ ์ „๋‹ฌ๋ ์ง€)

 

- ๋…ธ๋“œ ๊ฐ„ ์—ฐ๊ฒฐ๋  ํ™•๋ฅ , ํ•œ ๋…ธ๋“œ์— ์ตœ๋Œ€ ๋ช‡๊ฐœ๊นŒ์ง€ ์—ฐ๊ฒฐ?

    -> ์ œ์•ฝ => ํ–‰๋ ฌ๋กœ ํ‘œํ˜„

 

 

 

· Edge

   - ๋ธ”๋ก๋“ค ๊ฐ„์˜ connection ๋ช…์‹œ

   - lower level block -> higher level block : avoid forming a cycle

 

· Evolution

   - tournament selection algorithm

   - 'parent' architecture ์„ ํƒ & mutate -> new 'child' architecture

   - Fitness function: top-1 accuracy (์ž…๋ ฅ์„ ๋ฐ›์•„์„œ action ์ธ์‹ - ๋งž๋Š”์ง€ ํ‹€๋ ธ๋Š”์ง€)

                                    + top-5 accuracy (5๊ฐœ ์ค‘ ๋งž๋Š”๊ฒŒ ์žˆ๋ƒ ์—†๋ƒ)

   - child ๋งŒ๋“ค์–ด์ง€๋ฉด ๋ถ€๋ชจ ์„ธ๋Œ€ ์ค‘ ๊ฐ€์žฅ ์•ˆ ์ข‹์€ ๊ฒƒ ๋นผ๋ƒ„

   * ๋ธ”๋ก ์ˆ˜๋Š” ๊ฑฐ์˜ ์œ ์ง€. ๋ธ”๋ก๋“ค ๊ฐ„ ์—ฐ๊ฒฐ์„ฑ ๋ณ€ํ•จ.

 

· Generate a child architecture

   1) 'connection-learning-guided evolution' : crossover

   2) mutation operators : diversity

 

· Connection-learning-guided evolution

   - ๋ถ€๋ชจ ๋…ธ๋“œ ์ผ๋ถ€ ์œ ์ง€ + ์ผ๋ถ€ ๋ณ€ํ˜•

   - ๊ฐ€์ค‘์น˜๊ฐ€ ๋†’์€ connection์€ ์œ ์ง€ํ•˜๊ณ , ๋‚ฎ์€ connection์€ ๋Œ€์ฒดํ•จ.

 

· Mutation operators

   - Merge / Split a block.